New Mexico Junior College
Energy Technology
Program
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome</td>
<td>3</td>
</tr>
<tr>
<td>NMJC Mission Statement and Goals</td>
<td>4</td>
</tr>
<tr>
<td>NMJC Student Learning Outcomes</td>
<td>5</td>
</tr>
<tr>
<td>Energy Technology Department Student Learning Outcomes</td>
<td>5</td>
</tr>
<tr>
<td>Energy Technology Course Descriptions & Learning Outcomes</td>
<td>5</td>
</tr>
<tr>
<td>Energy Technology Program Descriptions</td>
<td>10</td>
</tr>
<tr>
<td>Curriculum</td>
<td>11</td>
</tr>
<tr>
<td>Nuclear Technician Fact Page</td>
<td>12</td>
</tr>
<tr>
<td>Petroleum Technology Fact Page</td>
<td>13</td>
</tr>
<tr>
<td>Associate of Applied Science in Energy Technology Degree Plan</td>
<td>14</td>
</tr>
<tr>
<td>Energy Technician Certificate</td>
<td>15</td>
</tr>
<tr>
<td>Nuclear Technician Certificate</td>
<td>16</td>
</tr>
<tr>
<td>Petroleum Technician Certificate</td>
<td>17</td>
</tr>
<tr>
<td>Energy Technology Admission Requirements</td>
<td>18</td>
</tr>
<tr>
<td>Energy Technology Program Application Form</td>
<td>20</td>
</tr>
<tr>
<td>Pre-Admission Advisor Meeting Confirmation Form</td>
<td>22</td>
</tr>
<tr>
<td>Energy Technology Program – Personal Data Sheet</td>
<td>23</td>
</tr>
<tr>
<td>NRC Scholarship Application</td>
<td>24</td>
</tr>
</tbody>
</table>
WELCOME!

Welcome to New Mexico Junior College’s Energy Technology Program. The goal of the Energy Technology Program is to offer a comprehensive program to students, who upon graduation with an Associate of Applied Science Degree, are prepared to enter the workforce as an entry level technician.

The purpose of the Energy Technology Program at New Mexico Junior College is to support the educational framework necessary for the nation to successfully move forward with its energy initiatives. This dynamic program promotes and strengthens courses by teaching the required skills, safety, site security, environmental protection, and other critical fields relating the nation’s energy needs.

The Associate of Applied Science Degree and Certificate Program is offered completely online. Students will have the luxury of taking classes in their own environment while also having access to the many resources provided by New Mexico Junior College.

The Energy Technology Program takes pride in helping to prepare our students for a successful career in the Energy Industry. We believe that communication between program faculty and professors is key to the success of students. If you ever have any questions or concerns regarding the Energy Technology Program, please don’t hesitate to contact us!

Program Staff

Courtney Puryear
Director of Energy Programs
575.492.4714
cpuryear@nmjc.edu

Michelle Echeverria
Administrative Assistant
575.492.2885
mecheverria@nmjc.edu

Dr. Stephanie Ferguson
Dean of Distance Learning and Professional Studies
575.492.2643
sferguson@nmjc.edu
NMJC MISSION STATEMENT AND GOALS

Mission, Vision, Values

Mission
New Mexico Junior College, as a comprehensive community college, promotes success through learning.

Vision
New Mexico Junior College’s mission will be achieved by building a culture that values and promotes excellence, effectiveness, responsiveness, access, and community involvement.

Values
New Mexico Junior College is committed to the following values in support of its mission as we provide services to a diverse college community. New Mexico Junior College defines college community as its students, employees, partners, and citizens of the area we serve.

Access
In keeping with this value, the college:

• Helps members of the college community overcome their barriers to success.
• Provides convenient, affordable educational opportunities and services.
• Provides support for students transitioning to college and on to other postsecondary educational opportunities and to the workplace.
• Offers education, training, and activities that meet the diverse interests and needs of the college community.
• Supports educational opportunities through technology.

Responsiveness
In keeping with this value, the college:

• Continually scans the environment locally, regionally, and nationally to identify opportunities that will meet the ever-changing needs and interests of a diverse and dynamic community college.
• Enriches and increases partnerships to identify and meet the educational needs of the college community.
• Remains flexible to respond creatively and appropriately to the changing world and to the educational, social, and cultural needs for the diverse college community.
• Provides employees with opportunities for professional growth and development.
• Ensures fiscal responsibility and public accountability.
• Offers relevant programs and support services that meet the needs of a diverse college community.
• Contributes to the social, cultural, and economic development of the college community.

Effectiveness
In keeping with this value, the college will build its understanding and commitment of effectiveness by establishing and tracking student outcomes to evaluate and improve learning by:

• Promoting employees’ roles and responsibilities in fostering a climate of learning.
• Promoting high academic standards through excellent instruction.
• Engaging in sound planning, management, and systematic evaluation for the improvement of programs and services.
• Ensuring adequate, fair, and equitable benefits, policies, and procedures.
• Acquiring and allocating resources to support the mission and goals of the college.
• Keeping the college community aware of college activities, needs, and performance.
• Providing a supportive, caring, student-centered environment.
• Fostering a work environment that encourages open communication, innovation, productivity, accountability, and personal commitment.
• Providing and using current technologies that support educational and training objectives.
Excellence
In keeping with this value, the college will build its understanding and commitment of high standards and quality by:

- Committing to an environment of self-evaluation and continuous improvement.
- Setting benchmarks to develop an understanding of excellence.
- Nurturing the development and practice of leadership.
- Encouraging and rewarding initiative, innovation, outstanding performance, ethical decision making, and accountability.
- Offering support services that are designed to foster success.
- Striving for an environment that does not accept mediocrity.

NMJC STUDENT LEARNING OUTCOMES

Communication (C)
C1. Comprehend information to summarize, analyze, evaluate, and apply to a specific situation.
C2. Communicate in an accurate, correct, and understandable manner.

Critical Thinking and Problem Solving (CT)
CT1. Define a problem and arrive at a logical solution.
CT2. Use appropriate technology and information systems to collect, analyze, and organize information.
CT3. Apply critical thinking, analysis, and problem solving to data.

Self and Community (SC)
SC1. Analyze and reflect on the ethical dimensions of legal, social, and/or scientific issues.
SC2. Communicate an awareness of a variety of perspectives of ethical issues.
SC3. Interact with individuals and within groups with integrity and awareness of others’ opinions, feelings, and values.

ENERGY TECHNOLOGY DEPARTMENT STUDENT LEARNING OUTCOMES

DSLO1. Accurately solve problems using foundational mathematics, physical sciences, and energy technology concepts. (CT3; C1)
DSLO2. Demonstrate an understanding of environmental safety in regards to Energy Industry processes and procedures. (C1; SC1)
DSLO3. Conduct, analyze, and/or interpret real world scenarios and case studies or laboratory experiments. (CT1; CT3; C1; SC2)
DSLO4. Demonstrate effective oral and written communication skills using specific energy technology terminology. (C2; SC3)
DSLO5. Demonstrate knowledge of energy systems and operations. (CT2; C2)

ENERGY TECHNOLOGY COURSE DESCRIPTIONS AND LEARNING OUTCOMES

Departmental Requirements

ENGT 213A Environmental Health and Safety
- This course provides a working knowledge of the Hazardous Materials Transportation Regulations. The emphasis of the course is on definition of hazard classes using the hazardous materials table, marking, labeling, placarding, and shipping papers. Material from the Nuclear Regulatory Commission, OSHA, and the Environmental Protection Agency is integrated throughout the course. This is a three credit hour course.

Course Outcomes
1. Understand the multiple impacts of human activity on the environment and approaches to sustaining biodiversity, resources, and environmental quality. (DSLO2)

2. Understand hazardous material (HAZMAT) classes; understand HAZMAT transportation regulations (49 CFR Parts 100 to 177) and the Hazardous Materials Table (HMT); and have working knowledge of HAZMAT shipping papers, marking, labeling, and placarding. (DSLO2)

3. Demonstrate ability to communicate using industry terminology. (DSLO4)

ENGT 223E Electrical Theory
- This course is an introduction to Basic Electronic Theory. This course covers how to identify electronic components used in communications and industrial equipment, how to calculate voltage and current in series and parallel circuits, and how to understand the basics of circuit design. This is a three credit hour course.

Course Outcomes
1. Understand and explain theories of electricity. (DSLO5)
2. Apply Ohm’s Law and network theorems to calculate and analyze appropriate electrical formulas. (DSLO1)
3. Classify specific electrical components and their applications. (DSLO4)

ENGT 213B Fundamentals of Instrumentation and Controls
- In this course students will be introduced to a variety of detectors, including temperature, pressure, level, flow, and radiation; position indicators; and principles of control systems used in the various energy industries. This is a three credit hour course.

Course Outcomes
1. Describe the construction, operation, failure modes, and principles of various types of energy operations and controls. (DSLO5)
2. Analyze the principles of operation for control systems used in evaluating and regulating changing conditions in a process. (DSLO3)

ENGT 213 Cyber Security for the Energy Industry
- This course introduces students to protecting their computers and technology devices from cyber-attacks. Topics include analysis of cyber security, personal security, Internet security, mobile security, and risks to Internet and computer privacy. This course focuses on issues particularly related to cyber security in the Energy Industry. This course is a three credit hour course.

Course Outcomes
1. Differentiate among cyber, personal, and mobile security. (DSLO3)
2. Apply Internet security procedures in order to prevent threats to computer security. (DSLO3)
3. Evaluate risks to Internet privacy. (DSLO3)

ENGT 223A Thermodynamics, Heat Transfer, and Fluid Flow
- This course will provide students with the basic principles of thermodynamics, heat transfer, and fluid flow. Students will be introduced to the properties of fluids, conduction, convection, radiation-heat transfer, and the relationship between types of energy in a fluid stream. This is a three credit hour course.

Course Outcomes
1. Explain basic thermodynamics, heat transfer, and fluid flow principles. (DSLO4)
2. Apply basic thermodynamics, heat transfer, and fluid flow techniques. (DSLO1)

ENGT 213C Programmable Logic Controllers
- This course will introduce students to the basics of Programmable Logic Controllers (PLC) used in industrial control systems, including electronic device-to-device interfacing, data communication, signal processing, data display, and control operations. This is a three credit hour course.

Course Outcomes
1. Demonstrate an understanding of industrial control systems and operations. (DSLO5)
2. Utilize device interfacing, communications, and processing. (DSLO3)

ENGT 223B Mechanical Science
- This course presents the basics of mechanical components, diesel engines, heat exchangers, pumps, and valves. Students will have the opportunity to understand the construction and operation of mechanical components associated with various Energy Industry facility and equipment operations and maintenance. This is a three credit hour course.

Course Outcomes
1. Demonstrate an understanding of the basics and applications of mechanical components. (DSLO5)
2. Evaluate the use and/or operation of various types of mechanical equipment associated with the Energy Industry. (DSLO3)

ENGT 223C Fundamentals of Vacuum Technology
- This course introduces students to methods and processes used in various energy industries. Students are introduced to the use of vacuum technology in the production of microelectronics, optics, specialty pharmaceuticals, chemical analysis, and other areas where high degrees of purity and cleanliness are required. This is a three credit hour course.

Course Objectives
1. Analyze characteristics of vacuum science, system components, and valves. (DSLO5)
2. Demonstrate an understanding of the physical concepts and the safe use of vacuum equipment. (DSLO2)
3. Calculate vacuum measurement and analyze vacuum chemical processes. (DSLO1)

ENGT 213F Fundamentals of Prints and Drawings for Technicians
- This course will introduce students to print reading, engineering fluid diagrams, electrical diagrams, electronic schematics, logic diagrams, engineering fabrication, and construction drawings. This course should provide personnel and contractors who are associated with Energy Industry facility construction, operation, and maintenance, a foundation in reading, interpreting, and using engineering prints and drawings. This is a three credit hour course.

Course Outcomes
1. Demonstrate an understanding of technical drawings and their specific terminology and symbols. (DSLO4)
2. Interpret engineering fabrication, construction, and architectural drawings. (DSLO3)
3. Create technical drawings based on specific criteria. (DSLO3)

ENGT 223D Material Science
- This course will introduce students to properties of materials used in most energy-related industries along with the importance of material selection to safety, reliability, and the environment.

Course Outcomes
1. Analyze the properties considered when selecting material for an Energy Industry facility. (DSLO3)
2. Categorize the basic structures of metals, types of imperfections and defects of metals, and how those structures are affected by processes. (DSLO4)
3. Explain the effects of thermal stress, thermal shock, and ductile and brittle failure to a system. (DSLO2)

ENGT 223 Fundamentals of Nuclear Science
- This course introduces students to fundamentals of Nuclear Science and Nuclear Physics and Reactor Theory. This course covers atomic physics, nuclear reactions, and detection of radiation. This is a three credit hour course.

Course Outcomes
1. Demonstrate an understanding of the basics of classical and nuclear physics, energy use, nuclear power, and nuclear fuel cycles. (DSLO5)
2. Analyze the cause of different nuclear reactions. (DSLO3)

ENGT 213G Fundamentals of Radiological Control
- This course will introduce students to radiological control, physical sciences, and ALARA (As-Low-As-Reasonably-Achievable) principles. This course covers mathematical fundamentals, nuclear physics, sources of radiation, and radiation exposure and control. This is a three credit hour course.

Course Outcomes
1. Evaluate different types of radiation in the environment and workplace. (DSLO2)
2. Demonstrate an understanding of how to optimally shield different types of radiation and reduce radiation exposure ALARA. (DSLO5)

ENGT 213H Radiological Control Systems
- This course introduces students to radiation control and management systems. Statistical methods for radiation counting, radioactive air sampling practices, and radioactive contamination control procedures will be reviewed. This is a three credit hour course.

Course Outcomes
1. Analyze and implement multiple radiation detectors into an overall radiation control and management system. (DSLO5)
2. Demonstrate an understanding of fundamental quality control practices and radiation measurements in a radiation control and management system. (DSLO5)
3. Explain best practices during radiation emergencies and in radiation control and management systems in order to minimize radiation exposure ALARA. (DSLO2)

ENGT 223G Radiological Instrumentation

- This course will introduce students to fundamental radiation detection methods and instruments. Portable and stationary laboratory radiation detection equipment will be reviewed with multiple applications. This is a three credit hour course.

Course Outcomes

1. Demonstrate an understanding of different types of radiation detection instruments and the appropriate applications for radiation detection instruments. (DSLO5)
2. Analyze data for different types of radiation detection instruments. (DSLO3)

Petroleum Technology

GE 114 Physical Geology

- This course will study earth materials including the origin of minerals and rocks, erosion and deposition, earth movements and mountain building, volcanism, earth resources, oceans, and meteorology. This is a four credit hour course.

Course Outcomes

By the end of this course, students should:

1. Have a basic understanding of the physical Earth, plate tectonics, volcanism, weathering and erosion, earthquakes, deformation and mountain building, mass wasting, running and ground water, glaciers, wind and deserts, and the ocean as it relates to geologic processes.
2. Identify Igneous, Sedimentary, and Metamorphic Rocks, as well as Minerals.
3. Experience geology through a local field trip.
4. Understand and appreciate how geology affects their everyday life.
5. Develop a desire to conserve and protect the Earth.

ENGT 203 Introduction to Oil and Gas

- This course introduces equipment, systems, instrumentation, and operations in industry. A variety of petroleum technologies as they relate to exploration, drilling, production, transportation, marketing, and hydrocarbon processing will be covered. This is a three credit hour course.

Course Outcomes

1. Demonstrate an understanding of the various aspects and terminology in the Petroleum Industry. (DSLO4)
2. Explain the basics of Exploration, Drilling, Production, Marketing, and Hydrocarbon Processing. (DSLO3)

ENGT 213E Petroleum Recovery and Production Methods

- This course introduces equipment and processes used to produce oil and gas. Topics covered will include wellheads, pumping units, flow lines, valves, piping manifolds, separators, heater-treaters, stock tanks, central tank batteries, pumps, and metering. This course covers unique problems during oil and gas production and important solutions to these challenges. This is a three credit hour course.

Course Outcomes

1. Demonstrate an understanding of the methods of artificial lift and why they are necessary. (DSLO3)
2. Analyze oilfield production facilities and how they work together. (DSLO5)
3. Calculate produced fluid volumes and how they are measured and accounted for. (DSLO1)
4. Explain the steps of the oilfield production process and what order they occur in. (DSLO3)

ENGT 213D Drilling Technology and Operations

- This course introduces on and offshore well drilling practices and procedures that are involved in complex drilling operations. Topics covered will include rig equipment, casing design, fishing, and proper procedures to successfully drill a well.

Course Outcomes

1. Demonstrate an understanding of the various aspects of Drilling Technology and Operations. (DSLO5)
2. Analyze Land and Offshore Well Drilling Practices and procedures involved in complex drilling operations. (DSLOS)
3. Demonstrate an understanding of students to rig equipment, casing design and completions, directional drilling basics, and drilling problems and well control. (DSLO4)
ENERGY TECHNOLOGY PROGRAM DESCRIPTIONS

Energy Technician (Certificate)
NMJC offers a Certificate in Energy Technology. The Energy Technology Certificate Program is a highly technical program designed to provide students with the opportunity to develop the technical expertise, math and analytical skills, and interpersonal skills required to begin successful careers as energy technicians. This Certificate is a minimum of 36 required credit hours.

Nuclear Technician (Certificate, AAS)
NMJC offers a Certificate and an Associate of Applied Science Degree in Energy Technology with an emphasis area in Nuclear Technology. The Nuclear Technician Program is a highly technical program designed to provide students with the opportunity to develop the technical expertise, math and analytical skills, and interpersonal skills required to begin successful careers as nuclear operations technicians. This Certificate is a minimum of 33 required credit hours. This Degree is a minimum of 61 credit hours. The following courses are included in this emphasis area:
- Fundamentals of Nuclear Science
- Radiological Control Systems
- Fundamentals of Radiological Control
- Radiological Instrumentation

Petroleum Technician (Certificate, AAS)
NMJC offers a Certificate and an Associate of Applied Science Degree in Energy Technology with an emphasis area in Petroleum Technology. The Petroleum Technology Program is a highly technical program designed to provide students with the opportunity to develop the technical expertise, math and analytical skills, and interpersonal skills required to begin successful careers as petroleum technicians. This Certificate is a minimum of 34 required credit hours. This Degree is a minimum of 62 credit hours. The following courses are included in this emphasis area:
- Physical Geology
- Petroleum Recovery and Production Methods
- Introduction to Oil and Gas
- Drilling Technologies and Operations
CURRICULUM

The following curriculum is delivered each year. Course descriptions are published in the college catalog as well on NMJC’s website.

FALL (First 8 weeks)
- ENGT 223E Electrical Theory
- ENGT 223B Mechanical Science
- ENGT 223C Fundamentals of Vacuum Technology
- ENGT 213G Fundamentals of Radiological Control*
- ENGT 203 Introduction to Oil and Gas

FALL (Second 8 weeks)
- ENGT 213A Environmental Health and Safety
- ENGT 213B Fundamentals of Instrumentations and Controls
- ENGT 213C Programmable Logic Controllers
- ENGT 223G Radiological Instrumentation*
- ENGT 213E Petroleum Recovery and Production Methods

SPRING (First 8 weeks)
- ENGT 223A Thermodynamics, Heat Transfer, and Fluid Flow
- ENGT 213F Fundamentals of Prints and Drawings for Technicians
- ENGT 213H Radiological Control Systems*
- ENGT 213D Drilling Technologies and Operations

SPRING (Second 8 weeks)
- ENGT 213 Cyber Security for the Energy Industry
- ENGT 223D Material Science
- ENGT 223 Fundamentals of Nuclear Science

SUMMER
- ENGT 23F Process Management

*College Algebra is a prerequisite
NUCLEAR TECHNICIAN FACT PAGE

NUCLEAR ENERGY

ASSOCIATE OF APPLIED SCIENCE IN ENERGY TECHNOLOGY

New Mexico Junior College

2 YEAR DEGREE OR 1 YEAR CERTIFICATE

Job Outlook

Work Environment
In nuclear power plants, nuclear technicians typically work in offices and control rooms where they use computers and other equipment to monitor and help operate nuclear reactors. Most work full-time, but schedules vary in the nuclear power industry. Nuclear technicians must take safety precautions to avoid exposure to radiation.

Potential Employers
- URENCO
- Sandia National Labs
- Waste Control Specialist
- Waste Isolation Pilot Plant
- Nuclear Power Plants
- Nuclear Waste Disposal Plants

Potential Job Positions
- Environmental Specialist $40,000-$50,000
- Plant Operators $20,000-$40,000
- Chemical Operators $60,000-$70,000
- RadTech Specialist $70,000-$80,000

Program Information

8 Week ONLINE Courses
Each course in the Energy Technology Program is an 8 week ONLINE course. The classes and schedules are designed so students can finish their AAS Degree and enter the workforce in as little as two years.

Course Material
Because the program is completely online, NMJC has partnered with Lockheed Martin to develop supplemental course material in order to make students' online experience as hands-on as possible.

Professors
All of the Energy Technology professors are highly qualified subject matter experts from the nuclear industry. It is important to NMJC to hire professors that not only have an adoration in nuclear energy, but also many years of experience and a passion for education.

How to Apply

Contact Courtney Puryear
Director of Energy Programs
Email: couryear@nmjc.edu
Phone: 575-491-4714

*Job info based on US Bureau of Labor Statistics
PETROLEUM TECHNOLOGY

New Mexico Junior College

ASSOCIATE OF APPLIED SCIENCE IN ENERGY TECHNOLOGY

2 YEAR DEGREE OR 1 YEAR CERTIFICATE

Petroleum Technicians

Quick Facts about Petroleum Technicians

2015 Median Pay
$55,610/year, $26.73/hour

Typical Entry Level Education
Associate’s Degree

Number of Jobs in 2014
16,500

What do Petroleum Technicians do?

Petroleum technicians provide support to scientists and engineers in exploring and extracting natural resources, such as minerals, oil, and natural gas.

Work Environment

Petroleum technicians work in offices, laboratories, and the field. Most petroleum technicians work full time.

Job Outlook

Potential Employers
Halliburton
Chevron
Targa Resources
Oxy
Oil and Gas Companies
Electric Companies

Potential Job Positions
Environmental Specialist
Measurement Specialist
Pumper
Field Specialist
Plant Specialist
Electronic Instrument Specialist

Job Placement

Employment of petroleum technicians is projected to grow 12 percent from 2014 to 2024, faster than the average for all occupations. Strong demand for natural gas is expected to increase demand for geological exploration and extraction in the future.

Program Information

8 Week ONLINE Courses
Each course in the Energy Technology Program is an 8 week ONLINE course. The classes and schedules are designed so students can finish their AAS Degree and enter the workforce in as little as two years.

Course Material

Because the program is completely online, NMJC has partnered with Lockheed Martin to develop supplemental course material in order to make students' online experience as hands-on as possible.

Professors

All of the Energy Technology professors are highly qualified subject matter experts from the nuclear industry. It is important to NMJC to hire professors that not only have an education in nuclear energy, but also many years of experience and a passion for education.

How to Apply

Contact Courtney Puryear
Director of Energy Programs
Email: cpuryear@nmjc.edu
Phone: 575.492.4714

*Job info based on US Bureau of Labor Statistics
ASSOCIATE OF APPLIED SCIENCE IN ENERGY TECHNOLOGY

New Mexico Junior College
Associate of Applied Science in Energy Technology

<table>
<thead>
<tr>
<th>General Education Requirements</th>
<th>Credits</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 113 OR OH 114A</td>
<td>Current Concepts of Chemistry OR General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>EN 119</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>MA 113</td>
<td>College Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MA 11B</td>
<td>Statistics</td>
<td>3</td>
</tr>
<tr>
<td>PH 114 OR PT 114</td>
<td>Introduction to Physics OR General Physics</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Departmental Electives — Select 3 Credit Hours</th>
<th>Course</th>
<th>Credits</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 232</td>
<td>Business Communication</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENOT 223F</td>
<td>Process Management</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENOT 223</td>
<td>Energy Technology Internship</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENOT 225</td>
<td>Energy Technology Internship</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>MA 112</td>
<td>Plane Trigonometry</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MA 144</td>
<td>Calculus and Analytic Geometry</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Departmental Requirements — 30 Credit Hours</th>
<th>Course</th>
<th>Credits</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENOT 212A</td>
<td>Environmental Health & Safety</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENOT 212B</td>
<td>Fundamentals of Instrumentation and Controls</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENOT 212C</td>
<td>Programmable Logic Controllers</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENOT 212F</td>
<td>Fundamentals of Print and Drawings for Technicians</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENOT 212A</td>
<td>Thermodynamics, Heat Transfer, and Fluid Flow</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>ENOT 212B</td>
<td>Mechanics Science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENOT 212C</td>
<td>Fundamentals of Vacuum Technology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENOT 212D</td>
<td>Material Science for the Energy Industry</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>ENOT 212E</td>
<td>Nuclear Energy</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>ENOT 212F</td>
<td>Cyber Security for the Energy Industry</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emphasis Area — Select One</th>
<th>Course</th>
<th>Credits</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear Energy — Select One</td>
<td>Course</td>
<td>Credits</td>
<td>Grade</td>
</tr>
<tr>
<td>ENOT 2156</td>
<td>Fundamentals of Radiological Control</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>ENOT 215M</td>
<td>Radiological Control Systems</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ENOT 215N</td>
<td>Fundamentals of Nuclear Science</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ENOT 215D</td>
<td>Radiological Instrumentation</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Petroleum Technology — 13 Credit Hours</th>
<th>Course</th>
<th>Credits</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENOT 210</td>
<td>Introduction to Oil and Gas</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENOT 213E</td>
<td>Petroleum Recovery and Production Methods</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENOT 213B</td>
<td>Drilling Technology and Operations</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GE 111</td>
<td>Physical Geology</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Minimum Credit Hours Required: __________
Total Credit Hours Acquired: __________
Cumulative GPA: __________

- Minimum Credit Hours Required = 62 Credit Hours
- All courses, including General Education Requirements, must be completed with a “C” or better.
- The student must have a cumulative grade point average of at least 2.0.
- A minimum of 15 seminar hours must be earned at NMC. The remainder may be acceptable transfer credits.
- Transfers and/or developmental courses do not fulfill any of the above requirements.
- Students will not be permitted to graduate if they have unresolved incompletes or grades on their academic record.

Student Signature: __________________
Advisor’s Signature: __________________
Dean’s Signature: __________________
Registrar’s Office: __________________

Official Degree Plan Effective Date: 7/11/2017

Although college officials will give every assistance possible, it is the final responsibility of the student to check all phases of his or her degree.

Updated 7/11/2017
ENERGY TECHNICIAN CERTIFICATE

[New Mexico Junior College logo]

Certificate: Energy Technician

<table>
<thead>
<tr>
<th>Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A/B:</td>
<td></td>
</tr>
</tbody>
</table>

General Education Requirements — 9 Credit Hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA 111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA 1130</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Departmental Requirements — 24 Credit Hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGT 1230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGT 2130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGT 2250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGT 2330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGT 2390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGT 215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGT 2230</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimum Credit Hours Required: [] Total Credit Hours Acquired: [] Cumulative GPA: []

- Minimum Credit Hours Required: 33 Credit Hours
- All courses must be completed with a "C" or better.
- The student must have a cumulative grade point average of at least 2.0.
- A minimum of 15 semester hours must be earned at NMC. The remainder may be acceptable transfer credits.
- Transciplinary and/or developmental courses do not fulfill any of the above requirements.
- Students will not be permitted to graduate if they have unsatisfactory incomplete grades on their academic record.

Student Signature

Dean’s Signature

Official Degree Plan Filling Date

Although College Officials will give every assistance possible, it is the final responsibility of the student to check all phases of his or her degree.

15
Fall 2017
NUCLEAR TECHNICIAN CERTIFICATE

New Mexico Junior College
Certificate: Nuclear Energy Technician

<table>
<thead>
<tr>
<th>General Education Requirements — 8 Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
</tr>
<tr>
<td>EN 113</td>
</tr>
<tr>
<td>MA 113</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Departmental Requirements — 15 Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
</tr>
<tr>
<td>ENGT 2231</td>
</tr>
<tr>
<td>ENGT 2232</td>
</tr>
<tr>
<td>ENGT 2233</td>
</tr>
<tr>
<td>ENGT 2234</td>
</tr>
<tr>
<td>ENGT 2235</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nuclear Energy — 12 Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
</tr>
<tr>
<td>ENGT 2111</td>
</tr>
<tr>
<td>ENGT 2112</td>
</tr>
<tr>
<td>ENGT 2113</td>
</tr>
<tr>
<td>ENGT 2114</td>
</tr>
</tbody>
</table>

Minimum Credit Hours Required: 33 Credit Hours
All courses must be completed with a “C” or better.
The student must have a cumulative grade point average of at least 2.0.
A minimum of 15 semester hours must be earned at NMJC. The remainder may be acceptable transfer credits.
Transitional and/or developmental courses do not fulfill any of the above requirements.
Students will not be permitted to graduate if they have unresolved incomplete (“I”) grades on their academic record.

Student Signature
Dean’s Signature
Advisor’s Signature
Registrar’s Office

Although College Officials will give every assistance possible, it is the final responsibility of the student to check all phases of his or her degree.

Updated 7/11/2017
PETROLEUM TECHNICIAN CERTIFICATE

New Mexico Junior College
Certificate: Petroleum Technician

Name:

Air:

General Education Requirements — 6 Credit Hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 113</td>
<td>Composition and Rhetoric</td>
<td>3</td>
</tr>
<tr>
<td>MA 113</td>
<td>College Algebra</td>
<td>3</td>
</tr>
</tbody>
</table>

Departmental Requirements — 15 Credit Hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGT 222E Electrical Theory</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENGT 223C Programmable Logic Controllers</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENGT 222B Mechanical Science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENGT 222C Fundamentals of Vacuum Technology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENGT 223D Material Science</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Petroleum Technology — 13 Credit Hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGT 202 Introduction to Oil and Gas</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENGT 211E Petroleum Recovery and Production</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENGT 212D Drilling Technology and Operations</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GE 11A Physical Geology</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Minimum Credit Hours Required: Total Credit Hours acquired: Cumulative GPA:

- Minimum Credit Hours Required — 34 Credit Hours
- All courses must be completed with a "C" or better.
- The student must have a cumulative grade point average of at least 2.0.
- A minimum of 15 semester hours must be earned at NMJC. The remainder may be acceptable transfer credits.
- Transitional and/or developmental courses do not fulfill any of the above requirements.
- Students will not be permitted to graduate if they have unresolved incomplete (I) grades on their academic record.

Student Signature

Advisor's Signature

Dean's Signature

Registrar's Office

Official Degree Plan Filing Date

Although college officials will give every assistance possible, it is the final responsibility of the student to check on progress of his or her degree.

Updated 7/11/2017
ENERGY TECHNOLOGY ADMISSION REQUIREMENTS

All students are required to become familiar with and comply with all policies contained in the NMJC Student Handbook and all the policies in this handbook. All New Mexico Junior College School Policies found in the College Catalog apply to students in the Energy Technology Program.

Admission Requirements
All students must sign the New Mexico Junior College Energy Technology Program Student Manual Acknowledgement Form before starting the Energy Technology Program.

A student is considered “pre-Energy Technology” prior to acceptance into the Energy Technology Program. The pre-Energy Technology student must complete all pre-Energy Technology requirements prior to submitting an application for admission to the Energy Technology Program.

Step 1: Completion of Pre-Energy Technology Requirements
The pre-Energy Technology student must complete the following prerequisite courses prior to admission to the Energy Technology Program.

1. Prerequisite Course Requirements:
 - EN 113 Composition and Rhetoric 3 credit hours
 - MA 113 Intermediate Algebra or higher* 3 credit hours

 *MA 113 or eligibility for MA 113 (Placement score into MA 113 or completed MA 113A with a C or higher within a year)

 All prerequisite courses must be completed with a grade of “C” or higher. Grades below “C” are not accepted by the Energy Technology Program.

Step 2: Completion of Energy Technology Program Admission Application Requirements
The pre-Energy Technology student must complete the pre-Energy Technology requirements prior to submitting an application for admission to the Energy Technology Program.

1. Energy Technology Program Admission Application Requirements:
 a. The student must be concurrently admitted to New Mexico Junior College and the Energy Technology Program in accordance with the admission requirements stated in the NMJC catalog. Admission to NMJC and admission to the Energy Technology Program require two separate applications. Admission to NMJC does not mean admission to the Energy Technology Program. A student must be in good academic standing with NMJC upon admission to the Energy Technology Program. The student must maintain a minimum 2.0 overall GPA. The student must complete the application process for admission to the Energy Technology Program 2 weeks prior to the beginning of the 8 week semester. If the application is not completed 2 weeks prior to the 8 week semester, the application will not be considered in the initial selection process for admission to the Energy Technology Program. Applications and forms are available in the Energy Technology Program Office.

 b. A completed admission application must contain the following documents:
 a. ENERGY TECHNOLOGY PROGRAM APPLICATION FORM Page 20
 b. PRE-ADMISSION ADVISOR MEETING CONFIRMATION FORM Page 22
 c. ENERGY TECHNOLOGY PROGRAM – PERSONAL DATA SET Page 23
 d. A copy of all the student’s college transcript(s) and transcript evaluation. It is the student’s responsibility to request the transcript copies and transcript evaluation be sent to the Energy Technology Program Office from the NMJC Registrar’s Office.*

 *Official college transcripts and CLEP scores must be forwarded directly from the originating institution to the NMJC Registrar’s Office for evaluation or delivered in an envelope sealed by the institution granting
credit. All official transcripts must be received by the NMJC’s office 2-4 weeks before the application deadline.

3. It is the student’s responsibility to verify his/her application is complete by the admission application deadline 2 weeks before the 8 week semester starts. Incomplete applications will not be considered in the admission selection process. The Energy Technology Program reserves the right to deny consideration for admission to any admission application that does not meet the established Energy Technology Program admission application requirements.

☐ **Step 3: Completion of Energy Technology Program Admission Eligibility Requirements**

Initial admission eligibility is based on the following criteria:

1. Satisfactory completion of all pre-Energy Technology requirements by the 2 week deadline before the 8 week semester starts for admission to the Energy Technology Program.

2. Satisfactory completion of admission application requirements by the 2 week deadline before the 8 week semester starts for admission to the Energy Technology Program.

☐ **Step 4: Energy Technology Program Rolling Admission Process**

The Energy Technology Program utilizes rolling admission criteria. Applications for admission to the Energy Technology Program will be accepted in the Energy Technology Program Office at all times for 8 week course admission to the Energy Technology Program. Only the admission applications completed by the deadline will be considered in the initial admission selection process.
ENERGY TECHNOLOGY PROGRAM APPLICATION FORM

Full Legal Name:

(Last Name) (First Name) (Middle Name)

Other Names Used:

Current Mailing Address:

(Current Mailing Address) (City) (State) (Zip Code)

Permanent Mailing Address:

(Permanent Mailing Address) (City) (State) (Zip Code)

NMJC Student ID# (A Number):

Email Address:

Email Address:

Home Telephone Number:

Telephone Number:

Anticipated Admission (Semester/Year):

Emergency Contact Information:

(Name) (Relationship) (Telephone Number)

(Name) (Relationship) (Telephone Number)

Place of Employment:

(Company) (Job Title) (Telephone Number)
Step 1: Completion of Pre-Energy Technology Requirements

The pre-Energy Technology student must complete the following prerequisite courses prior to admission to the Energy Technology Program.

1. Prerequisite Course Requirements:

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester/Year</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 113 Composition and Rhetoric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA 113A Intermediate Algebra or higher*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Please indicate higher MA course(s) below:

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester/Year</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All prerequisite courses must be completed with a grade of “C” or higher. Grades below “C” are not accepted by the Energy Technology Program.

Step 2: Completion of Energy Technology Program Admission Application Requirements

The pre-Energy Technology student must complete the pre-Energy Technology requirements prior to submitting an application for admission to the Energy Technology Program.

1. Energy Technology Program Admission Application Requirements:

 a. Con-current enrollment at NMJC
 b. Overall NMJC Grade Point Average (GPA) > 2.0
 c. Completion and submission of Energy Technology Application 2 weeks before the 8 week semester

2. A completed admission application must contain the following documents:

 a. Completed Energy Technology Program Application Form Page 20
 b. Signed Pre-admission Advisor Meeting Confirmation Form Page 22
 c. Completed Energy Technology Program – Personal Data Sheet Page 23
 d. College transcripts transferred from NMJC Registrar’s Office to Energy Technology Program Office

Incomplete application packets will not be considered for admission.

I certify that the information contained in this application is true and correct. I understand that misrepresentation or omission of information may be cause for denial of admission or dismissal from the Energy Technology Program. I understand I am applying for the Associate of Applied Science Degree in Energy Technology and/or Energy Technology Certificate.

Student’s Signature: __________________________ Date: ____________
PRE-ADMISSION ADVISOR MEETING CONFIRMATION FORM

☐ Please Circle yes or no to indicate your answers to the following questions:

1. Are you currently working? YES NO
2. Are you interested in an Internship? YES NO
3. Have you been enrolled in the ET Shell? YES NO

Please note that some energy companies will not hire you if you have a felony on your record.

Student’s Signature:

__ Date:_______________

Program Director’s Signature:

__ Date:_______________
ENERGY TECHNOLOGY PROGRAM – PERSONAL DATA SHEET

The data on this questionnaire is strictly confidential. The data will be utilized in the development of funding proposals and preparation of reports for Energy Technology Program development and will not be used for admission into the program.

Student Status
Full-time Student (≥ 12 Hours): __________
Part-time Student (< 12 Hours): __________

Please circle yes or no to indicate your answers to the following questions:
1. Have you been in the military? YES NO
2. Is English a second language for you? YES NO
3. Are you a citizen of the United States? YES NO
4. Are you considered an International student? YES NO
5. Does either parent have a 4-year college Degree? YES NO
6. Do you have any other Degree(s)? YES NO
 If so, what? __

Please circle the age that best describes you:
16-20
21-25
26-30
31-40
41-50
51-60
61 or older

Please circle the ethnicity that best describes you:
American Indian or Native Alaskan
Asian
Black or African American
Latino or Hispanic
Native Hawaiian or Pacific Islander
White or Caucasian
Other

Please circle yes or no to indicate your answers to the following questions:
1. Grant recipient? YES NO
 Type of grant: __
2. Student loan recipient? YES NO
 Type of loan: __
3. Scholarship recipient? YES NO
 Type of scholarship: ____________________________________
4. Work-study funds recipient? YES NO
5. Workforce Investment Act funds recipient? YES NO
6. Zero financial aid? YES NO
7. Other? __
Nuclear Regulatory Commission (NRC) Scholarship Application
NRC SCHOLARSHIP APPLICATION

- Must be a graduate of High School or GED
- Must have and maintain a GPA of 2.5 (on a 4.0 scale)
- Must be enrolled in a minimum of 12 hours (full time status) at New Mexico Junior College
- Open to United State Citizens only
- Must sign a NRC Service Agreement

This scholarship is available for those students seeking an Associate of Applied Science in Energy Technology with an emphasis in Nuclear Energy, Nuclear Technician Certificate, and/or Energy Technician Certificate from New Mexico Junior College. Students completing this program will have the ability to seek employment in a nuclear energy field.

Energy Technology Scholarship Application Instructions

Step 1 Complete the scholarship application.
Step 2 Include transcripts from High School, GED, and/or College. These should be included with your packet.
Step 3 Include two letters of recommendation on letter head. Neither of the letters may be written by a family member. Include the letters with your completed packet.
Step 4 Return the completed application with all required materials to:

Ms. Courtney Puryear
Attn: Scholarship Committee
New Mexico Junior College
1 Thunderbird Circle
Hobbs, NM 88240

Please note: Selection for this scholarship is based solely on merit without regard to race, religion, or ethnic background.
NRC SCHOLARSHIP APPLICATION

______________________________ ______________________________
Name (last, first middle initial) Other names that may appear on academic records

Current mailing address

City, State, Zip

Email address

Phone number (with area code)

Cell phone number (with area code)

Date of birth (Month/Day/Year)

Are you a US Citizen? YES NO Are you a resident of New Mexico? YES NO

Handwrite your education objective. (Use additional sheets if necessary)

__

__

__

__

__

__

__

__

__

__
NRC SCHOLARSHIP APPLICATION

What are your career objectives? (Use additional sheets if necessary)

__
__
__
__
__

Do you/will you have a high school diploma or GED? YES NO
If yes, what year was/will it be received? ____________________________
What is/was your high school cumulative grade point average or GED average? ____________________________
List the high school city you graded from or the GED program you prepared through: ____________________________

Please list your employment, extracurricular activities (such as school and community service), leadership, clubs, academic achievements, awards, and/or honors you would like the selection committee to consider. (Use additional sheets if necessary)

__
__
__
__
__
__
__
__

__
__
__
__

__

__

__
NRC SERVICE AGREEMENT

1. This service agreement is required for all student recipients of scholarships (hereinafter referred to as the “recipient”) funded by the U.S. Nuclear Regulatory Commission (NRC) through the New Mexico Junior College – Training and Outreach Department.

2. This agreement confirms the recipient’s obligations to maintain satisfactory academic progress and serve 06 (six) months in nuclear-related employment for each full year of academic support. The employment may be with nuclear-related industry, State agencies, Department of Energy laboratories, the NRC, other Federal agencies, or academia in the recipient’s sponsored field(s) of study.

3. The scholarship recipient must:
 a. Remain matriculated in the degree program for the field of study for which the scholarship was approved.
 b. Maintain satisfactory academic progress in the recipient’s field of study.
 c. Maintain a course load of at least 12 credit hours per semester as a full-time student in good standing.

4. If a recipient fails to maintain satisfactory academic progress, the scholarship will be terminated and the recipient could be obligated to repay the NRC the full amount of the scholarship/fellowship.

5. If a recipient receives any subsequent scholarship(s) through this program, the service obligation periods will run consecutively.

6. At the discretion of the NRC, the service obligation period may be delayed to allow the recipient to continue a subsequent degree program immediately following that sponsored under this program. For example, if a recipient receives a scholarship to earn a degree, he/she may request and be permitted to delay fulfilling their service obligation until after they complete a subsequent terminal degree program. Any such requests must be made to the NRC before a student enrolls in a subsequent degree program. If a student enrolls in a subsequent degree program before or without NRC approval, and the NRC does not subsequently approve the request, the NRC will not be held liable for any expenses incurred to dis-enroll, or for failure to otherwise meet the terms of this service obligation. Recipients only incur a service obligation to the NRC for funded periods of study.

7. If the student receives no employment offers or does not accept any of the offers received, the student is not relieved of the service obligation, unless, pursuant to this service agreement, the student applies for and receives a waiver from the NRC. Implicit in the waiver request is data or explanation by the student that efforts to secure employment in a nuclear-related field were undertaken. This can be in the form of job searches, referrals, etc. Absent a waiver from the NRC, rejection of one or more job offers could trigger the service agreement obligation.

8. If a recipient voluntarily leaves the employment of an approved employer in a field related to nuclear power during the period of obligated post-academic service, the recipient may immediately become liable to the United States Government for repayment of the entire amount of the assistance provided under the scholarship for which the service obligation has not been fulfilled.

9. By accepting this scholarship/fellowship, I agree to provide the NRC with current contact information (address, telephone, email, etc.), and employment information, subject to the provisions of the Privacy Act, for as long as I remain under obligated service. This information will be used solely for the purposes of verifying appropriate nuclear related employment in compliance with the service obligation requirements of this service agreement. In accordance with the Privacy Act, providing this information is voluntary; however, failure to do so may result in removal from the scholarship/fellowship program and/or repayment of all scholarship/grant money received. Contact information should be reported to eduscholar@nrc.gov.

10. By signing this agreement, the recipient certifies that he or she has read this agreement and agrees to all of the obligations it entails.

__ __________________________
Scholarship Recipient Date

__ __________________________
Institution Program Coordinator Date

__ __________________________
NRC Office of Human Resources Date